
QUICR-learning for Multi-Agent Coordination

Adrian K. Agogino
UCSC, NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

kagan@email.arc.nasa.gov

Abstract
Coordinating multiple agents that need to perform a sequence
of actions to maximize a system level reward requires solving
two distinct credit assignment problems. First, credit must be
assigned for an action taken at time step t that results in a
reward at time step t′ > t. Second, credit must be assigned
for the contribution of agent i to the overall system perfor-
mance. The first credit assignment problem is typically ad-
dressed with temporal difference methods such as Q-learning.
The second credit assignment problem is typically addressed
by creating custom reward functions. To address both credit
assignment problems simultaneously, we propose the “Q
Updates with Immediate Counterfactual Rewards-learning”
(QUICR-learning) designed to improve both the convergence
properties and performance of Q-learning in large multi-agent
problems. QUICR-learning is based on previous work on
single-time-step counterfactual rewards described by the col-
lectives framework. Results on a traffic congestion problem
shows that QUICR-learning is significantly better than a Q-
learner using collectives-based (single-time-step counterfac-
tual) rewards. In addition QUICR-learning provides signifi-
cant gains over conventional and local Q-learning. Additional
results on a multi-agent grid-world problem show that the im-
provements due to QUICR-learning are not domain specific
and can provide up to a ten fold increase in performance over
existing methods.

Introduction
Coordinating a set of interacting agents that take sequences
of actions to maximize a system level performance criteria
is a difficult problem. Addressing this problem with a large
single agent reinforcement learning algorithm is ineffective
in general because the state-space becomes prohibitively
large. A more promising approach is to give each agent in
the multi-agent system its own reinforcement learner. This
approach, however, introduces a new problem: how to as-
sign credit for the contribution of an agent to the system
performance, which in general is a function of all agents.
Allowing each agent to try to maximize the system level
global reward is problematic in all but the smallest prob-
lems as an agent’s reward is masked by the actions of all the
other agents in the system. In Markov Decisions Problems
(MDPs) presented in this paper, the global reward may be

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

influenced by as many as 800 actions (actions of 40 agents
over 20 time steps). Purely local rewards allow us to over-
come this “signal-to-noise” problem. On the other hand, lo-
cal rewards are problematic, since there are no guarantees
that policies formed by agents that maximize their local re-
ward will also maximize the global reward.

In this paper, we present “Q Updates with Immediate
Counterfactual Rewards learning” (QUICR-learning) which
uses agent-specific rewards that ensure fast convergence in
multi-agent coordination domains. Rewards in QUICR-
learning are both heavily agent-sensitive, making the learn-
ing task easier, and aligned with the system level goal, en-
suring that agents receiving high rewards are helping the sys-
tem as a whole. QUICR-learning uses standard temporal
difference methods but because of its unique reward struc-
ture, provides significantly faster convergence than standard
Q-learning in large multi-agent systems. In the next Sec-
tion, we present a brief summary of the related research. We
then discuss the temporal and structural credit assignment
problems in multi-agent systems, and describe the QUICR-
learning algorithm. The following two sections present re-
sults on two different problems that require coordination,
showing that QUICR-learning performs up to ten times bet-
ter than standard Q-learning in multi-agent coordination
problems. Finally we discuss the implications and limita-
tions of QUICR-learning and highlight future research di-
rections.

Previous Work
Currently the best multi-agent learning algorithms used in
coordinating agents address the structural credit assignment
problem by leveraging domain knowledge. In robotic soccer
for example, player specific subtasks are used, followed by
tiling to provide good convergence properties (Stone, Sut-
ton, & Kuhlmann 2005). In a robot coordination problem for
the foraging domain, specific rules induce good division of
labor (Jones & Mataric 2003). In domains where groups of
agents can be assumed to be independent, the task can be de-
composed by learning a set basis functions used to represent
the value function, where each basis only processes a small
number of the state variables (Guestrin, Lagoudakis, & Parr
2002). Also multi-agent Partially Observable Markov Deci-
sion Precesses (POMDPs) can be simplified through piece-
wise linear rewards (Nair et al. 2003). There have also

been several approaches to optimizing Q-learning in multi-
agent systems that do not use independence assumptions.
For a small number of agents, game theoretic techniques
were shown to lead to a multi-agent Q-learning algorithm
proven to converge (Hu & Wellman 1998). In addition, the
equivalence between structural and temporal credit assign-
ment was shown in (Agogino & Tumer 2004), and methods
based on Bayesian methods were shown to improve multi-
agent learning by providing better exploration capabilities
(Chalkiadakis & Boutilier 2003). Finally, task decomposi-
tion in single agent RL can be achieved using hierarchical
reinforcement learning methods such as MAXQ value func-
tion decomposition (Dietterich 2000).

Credit Assignment Problem
The multi-agent temporal credit assignment problem con-
sists of determining how to assign rewards (e.g., credit) for
a sequence of actions. Starting from the current time step t,
the undiscounted sum of rewards till a final time step T can
be represented by:

Rt(st(a)) =
T−t∑

k=0

rt+k(st+k(a)) . (1)

where a is a vector containing the actions of all agents at all
time steps, st(a) is the state function returning the state of
all agents for a single time step, and rt(s) is the single-time-
step reward function, which is a function of the states of all
of the agents.

This reward is a function of all of the previous actions of
all of the agents. Every reward is a function of the states of
all the agents, and every state is a function of all the actions
that preceded it (even though it is Markovian, the previous
states ultimately depend on previous actions). In a system
with n agents, a reward received on the last time step can be
affected by up to n ∗T actions. Looking at rewards received
at different time steps, on average 1

2n ∗T actions may affect
a reward in tightly coupled systems. Agents need to use
this reward to evaluate their single action; in the domains
presented in the results sections with forty agents and twenty
time steps there are up to 800 actions affecting the reward!

Standard Q-Learning
Reinforcement learners such as Q-learning address (though
imperfectly) how to assign credit of future rewards to an
agent’s current action. The goal of Q-learning is to create a
policy that maximizes the sum of future rewards, Rt(st(a)),
from the current state (Kaelbling, Littman, & Moore 1996;
Sutton & Barto 1998; Watkins & Dayan 1992). It does this
by maintaining tables of Q-values, which estimate the ex-
pected sum of future rewards for a particular action in a par-
ticular state. In the TD(0) version of Q-learning, a Q-value,
Q(st, at), is updated with the following Q-learning rule 1:

Q(st, at) = rt + maxaQ(st+1, a) . (2)
1To simplify notation, this paper uses Q-learning update no-

tation for deterministic (where learning rate α = 1 converges),
undiscounted Q-learning. The extensions to non-deterministic and
discounted cases through the addition of learning rate and discount-
ing parameters are straight-forward.

This update assumes that the action at is most responsible
for the immediate reward rt, and is less responsible for the
sum of future rewards,

∑T−t
k=1 rt+k(st+k(a)). This assump-

tion is reasonable since rewards in the future are affected by
uncertain future actions and noise in state transitions. In-
stead of using the sum of future rewards directly to update
its table, Q-learning uses a Q-value from the next state en-
tered as an estimate for those future rewards. Under certain
assumptions, Q-values are shown to converge to the actual
value of the future rewards (Watkins & Dayan 1992).

Even though Q-learning addresses the temporal credit as-
signment problem (i.e., tries to apportion the effects of all
actions taken at other time steps to the current reward), it
does not address the structural credit assignment problem
(i.e., how to apportion credit to the individual agents in the
system). As a result when many agents need to coordinate
their actions, standard Q-learning is generally slow since it
needs all agents to tease out their time dependent contribu-
tion to the global system performance based on the global
reward they receive. An additional issue with standard Q-
learning is that in general an agent needs to fully observe
the actions of other agents in order to compute its reward.
This requirement is reduced in the “Local Q-Learning” and
“QUICR-Learning” algorithms presented in this paper.

Local Q-Learning
One way to address the structural credit assignment problem
and allow for fast learning is to assume that agents’ actions
are independent. Without this assumption, the immediate
reward function for a multi-agent reward system may be a
function of all the states:

rt(st,1(a1), st,2(a1), . . . , st,n(an)) ,

where st,i(ai) is the state for agent i and is a function of
only agent i’s previous actions. The number of states deter-
mining the reward grows linearly with the number of agents,
while the number of actions that determine each state grows
linearly with the number of time steps. To reduce the huge
number of actions that affect this reward, often the reward is
assumed to be linearly separable:

rt(st) =
∑

i

wirt,i(st,i(ai)) .

Then each agent receives a reward rt,i which is only a func-
tion of its action. Q-learning is then used to resolve the re-
maining temporal credit assignment problem. If the agents
are indeed independent and their pursuing their local ob-
jectives has no deleterious side effects on each other, this
method leads to a significant speedup in learning rates as
an agent receives direct credit for its actions. However, if
the agents are coupled, then though local Q-learning will al-
low fast convergence, the agents will tend to converge to the
wrong policies (i.e., policies that are not globally desirable).
In the worst case of strong agent coupling, this can lead to
worse than random performance (Wolpert & Tumer 2001)).

QUICR-Learning
In this section we present QUICR-learning, a learning al-
gorithm for multi-agent systems that does not assume that

the system reward function is linearly separable. Instead it
uses a mechanism for creating rewards that are a function
of all of the agents, but still provide many of the benefits
of hand-crafted rewards. In particular, QUICR-learning re-
wards have:

1. high “alignment” with the overall learning task.
2. high “sensitivity” to the actions of the agent.
The first property of alignment means that when an agent
maximizes its own reward it tends to maximize the over-
all system reward. Without this property, a large multi-
agent system can lead to agents performing useless work, or
worse, working at cross-purposes. Having aligned rewards
is critical to multi-agent coordination. Reward sensitivity
means that an agent’s reward is more sensitive to its own ac-
tions than to other agents’ actions. This property is impor-
tant for agents to learn quickly. Note that assigning the full
system reward to all the agents (e.g., standard Q-learning)
has low agent-sensitivity, since each agent’s reward depends
on the actions of all the other agents.

QUICR-learning is based on providing agents with re-
wards that are both aligned with the system goals and sen-
sitive to the agent’s states. It aims to provide the bene-
fits of customizing rewards without requiring detailed do-
main knowledge. In a task where the reward can be ex-
pressed as in Equation 1, let us introduce the difference re-
ward (adapted from (Wolpert & Tumer 2001)) given by:

Di
t(st(a)) = Rt(st(a))−Rt(st(a− at,i)) ,

where a − at,i denotes a counterfactual state where agent i
has not taken the action it took in time step t (e.g., the action
of agent i has been removed from the vector containing the
actions of all the agents before the system state has been
computed). Decomposing further, we obtain:

Di
t(st(a)) =

T−t∑

k=0

rt+k(st+k(a))− rt+k(st+k(a− at,i))

=
T−t∑

k=0

dt+k(st+k(a), st+k(a− at,i)) . (3)

where dt(s1, s2) = rt(s1)−rt(s2). (We introduce the single
time step “difference” reward dt to keep the parallel between
Equations 1 and 3). This reward is more sensitive to an
agent’s action than rt since much of the effects of the other
agents are subtracted out with the counterfactual (Wolpert
& Tumer 2001). In addition often an agent does not need
to fully observe the actions of other agents to compute the
difference reward, since in many domains the subtraction
cancels out many of the variables. Unfortunately in general
dt(s1, s2) is non-Markovian since the second parameter may
depend on previous states, making its use troublesome in a
learning task involving both a temporal and structural credit
assignment. (This difficulty is examined further below.)

In order to overcome this shortcoming of Equation 3, let
us make the following assumption:

1. The counterfactual action a − at,i moves agent i to an
absorbing state, sb.

2. sb is independent of the agent’s current (or previous)
state(s).

These assumptions are necessary to have the Q-table back-
ups approximate the full time-extended difference reward
given in equation 3. Forcing the counterfactual action
a − at,i to move the agent into an absorbing state is nec-
essary to enable the computation of equation 3. Without this
assumption the ramifications of a − at,i would have to be
forward propagated through time to compute Di

t. The sec-
ond assumption is necessary to satisfy the Markov property
of the system in a subtle way. While the next state st+1

caused by action at is generally a function of the current
state, the absorbing state sb caused by the action a − at,i

should be independent of the current state in order for the
Q-table updates to propagate correctly. The problem here is
that Q-table backups are based on the next state entered, not
the counterfactual state entered. The experimental results
sections later in this paper show examples of the problems
caused when this assumption is broken. In addition to these
assumptions, the state of an agent should not be a direct
function of the actions of other agents, otherwise we would
have to compute the effects of counterfactual action a− at,i

on all the the agents. However, this does not mean that the
agents in the system are independent. They still strongly
influence each other through the system reward, which in
general is nonlinear.

Given these conditions, the counterfactual state for time
t + k is computed from the actual state at time t + k, by
replacing the state of agent i at time t with sb. Now the
difference reward can be made into a Markovian function:

di
t(st) = rt(st)− rt(st − st,i + sb) , (4)

where the expression st − st,i + sb denotes replacing agent
i’s state with state sb.

Now the Q-learning rule can be applied to the difference
reward, resulting in the QUICR-learning rule:

QUICR(st, at) = rt(st)− rt(st − st,i + sb)
+maxaQ(st+1, a)

= di
t(st) + maxaQ(st+1, a) . (5)

Note that since this learning rule is Q-learning, albeit ap-
plied to a different reward structure, it shares all the conver-
gence properties of Q-learning. In order to show that Equa-
tion 5 leads to good system level behavior, we need to show
that agent i maximizing di

t(st) (e.g., following Equation 5)
will maximize the system reward rt. Note that by definition
(st−st,i +sb) is independent of the actions of agent i, since
it is formed by moving agent i to the absorbing state sb from
which it cannot emerge. This effectively means the partial
differential of di

t(st) with respect to agent i is2:

∂

∂si

di
t(st) =

∂

∂si

(rt(st)− rt(st − st,i + sb))

2Though in this work we show this result for differentiable
states, the principle applies to more general states, including dis-
crete states.

=
∂

∂si

rt(st)−
∂

∂si

rt(st − st,i + sb)

=
∂

∂si

rt(st)− 0

=
∂

∂si

rt(st). (6)

Therefore any agent i using a learning algorithm to opti-
mize di

t(st) will tend to optimize rt(st).

QUICR-Learning and WLU
The difference reward in QUICR-Learning, di

t(st) =
rt(st)− rt(st− st,i + sb), is closely related to the “Wonder-
ful Life Utility” used in multiple non-time-extended prob-
lems (Wolpert & Tumer 2001):

WLU i(s) = r(s)− r(s− si + c) , (7)
where c is independent of state si. The strait-forward con-
version of this into single-time-step rewards is:

WLU i
t (st) = r(st)− r(st − st,i + ct) , (8)

where ct is independent of state st. The reward di
t(st) is

a form of WLU i
t (st) that places greater restriction on ct:

it must be independent of all previous states and should be
an absorbing state. Without these restrictions WLU i

t cre-
ates problems with reward alignment and sensitivity. With-
out the restrictions, WLU i

t is aligned with the system re-
ward for single-time-step problems since ct is independent
of the agent’s current state. The subtle difficulty is that val-
ues of WLU i

t get propagated back to previous states through
Q-learning. If ct is not independent of all previous states,
values that are not aligned with the system reward may be
propagated back to previous states. While these differences
sometimes do not matter, experimental results presented
later in this paper show that they are often important. Hav-
ing ct be an absorbing state (as done in QUICR-learning) is
needed to keep the learners’ Q values approximate the time
extended difference reward Di

t(st(a)).

Traffic Congestion Experiment
To evaluate the performance of QUICR-learning, we per-
form experiments that test the ability of agents to maximize a
reward based on an abstract traffic simulation. In this exper-
iment n drivers can take a combination of m roads to make
it to their destination. Each road j has an ideal capacity cj

representing the size of the road. In addition each road has a
weighting value wj representing a driver’s benefit from tak-
ing the road. This weighting value can be used to represent
such properties such as a road’s difficulty to drive on and
convenience to destination. In this experiment a driver starts
on a road chosen randomly. At every time step, the driver
can choose to stay on the same road or to transfer to one of
two adjacent roads. In order to test the ability of learners to
perform long term planning, the global reward is zero for all
time steps, except for the last time step when it is computed
as follows:

rt =
∑

j

kj,te
(−

kj,t
cj

)
, (9)

where kj,t is the number of drivers on road j at time t.

Learning Algorithms
In our experiments for both this traffic congestion problem
and the grid world problem (presented in the next section)
we tested the multi-agent system using variants of the tem-
poral difference method with λ = 0 (TD(0)). The actions of
the agents were chosen using an epsilon-greedy exploration
scheme and tables were initially set to zero with ties broken
randomly (in the traffic congestion experiment ε was set to
0.05 and in the multi-agent grid world experiment ε was set
to 0.15). In this case, there were 60 agents taking actions for
six consecutive time steps. The learning rate was set to 0.5
(however to simplify notation we do not show the learning
rates in the update equations). The four algorithms are as
follows:
• Standard Q-learning is based on the full reward rt:

Q(st, at) = rt(st) + maxaQ(st+1, a) . (10)

• Local Q-learning is only a function of the specific driver’s
own road, j:

Qloc(st, at) = kj,te
(−

kj,t
cj

) + maxaQloc(st+1, a) .

• QUICR-learning instead updates with a reward that is a
function of all of the states, but uses counterfactuals to
suppress the effect of other driver’s actions:

QUICR(st, at) = rt(st)− rt(st−st,i+sb)
+maxaQUICR(st+1, a) ,

where st − st,i + sb is the state resulting from removing
agent i′s state and replacing it with the absorbing state sb.

• WLUt Q-learning is similar to QUICR-learning, but uses
a simpler form of counterfactual state. Instead of replac-
ing the state st,i by the absorbing state sb, it is replaced
by the state that the driver would have been in if he had
taken action 0, which in this case is the same road he was
on the previous time step : st−1,i. The resulting update
equation is:

QWLU (st, at) = rt(st)− rt(st − st,i + st−1,i)
+maxaQWLU (st+1, a) .

Results
Experimental results on the traffic congestion problem show
that QUICR-learning learns more quickly and achieves a
higher level of performance than the other learning meth-
ods (Figure 1). While standard Q-learning is able to im-
prove performance with time, it learns very slowly. This
slow learning speed is caused by Q-learning’s use of the full
reward rt(st), which is a function of the actions of all the
other drivers. When a driver takes an action that is benefi-
cial, the driver may still receive a poor reward if some of the
fifty nine other drivers took poor actions at the same time.
In contrast, local Q-learning learns quickly, but since it uses
a reward that is not aligned with the system reward, drivers
using local Q-learning eventually learn to take bad actions.
Early in learning drivers using local Q-learning perform well
as they learn to use the roads with high capacity and higher

weighting. However, as learning progresses the drivers start
overusing the roads with high weighting, since their reward
does not take into account that using other roads would ben-
efit the system as a whole. This system creates a classic
Tragedy of the Commons scenario. By over utilizing the
“beneficial” roads, the drivers end up being worse off than
if they had acted in a cooperative manner. Drivers using
WLUt Q-learning have similar problems because although
they are aligned at each time step, they are not aligned across
time steps.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

G
lo

b
a
l
R

e
w

a
rd

 A
c
h
ie

v
e
d

Time

QUICR-Learning
WLU Q-Learning

Q-Learning
Local Q-Learning

Figure 1: Traffic Congestion Problem (60 Agents).

Multi-agent Grid World Experiment
The second set of experiments we conducted involved a
standard grid world problem (Sutton & Barto 1998). In this
problem, at each time step, the agent can move up, down,
right or left one grid square, and receives a reward (possi-
bly zero) after each move. The observable state space for
the agent is its grid coordinate and the reward it receives de-
pends on the grid square to which it moves. In the episodic
version, which is the focus of this paper, the agent moves
for a fixed number of time steps, and then is returned to its
starting location.

In the multi-agent version of the problem there are mul-
tiple agents navigating the grid simultaneously influencing
each others’ rewards. In this problem agents are rewarded
for observing tokens located in the grid. Each token has a
value between zero and one, and each grid square can have
at most one token. When an agent moves into a grid square,
it observes a token and receives a reward for the value of the
token. Rewards are only received on the first observation of
the token. Future observations from the agent or other agents
do not receive rewards in the same episode. More precisely,
rt is computed by:

rt(st) =
∑

i

∑

j

VjI
t
st,i=Lj

, (11)

where It is the indicator function which returns one when
an agent in state st,i is in the location of an unobserved to-
ken Lj . The global objective of the multi-agent grid world

problem is to observe the highest aggregated value of tokens
in a fixed number of time steps T.

Learning Algorithms
As in the traffic congestion problem, we test the perfor-
mance of the following four learning methods:
• Standard Q-learning is based on the full reward rt:

Q(st, at) = rt(st) + maxaQ(st+1, a) . (12)

• Local Q-learning is only a function of the specific agent’s
own state:

Qloc(st, at) = sumjVjI
t,i
st,i=Lj

+ maxaQloc(st+1, a).

• QUICR-learning instead updates with a reward that is a
function of all of the states, but uses counterfactuals to
suppress the effect of other agents’ actions:

QUICR(st, at) = rt(st)− rt(st−st,i+sb)
+ maxaQUICR(st+1, a) ,

where st − st,i + sb is the state resulting from removing
agent i′s state and replacing it with the absorbing state sb.

• WLU Q-learning is similar to QUICR-learning, but uses
a different counterfactual state. Instead of replacing the
state st,i by the absorbing state sb, it is replaced by the
state that the agent would have been in if he had taken
action 0, which causes the agent to move to the right:

QWLU (st, at) = rt(st)− rt(st − st,i + sright
t−1,i)

+ maxaQWLU (st+1, a) ,

where sright
t−1,i is the state to the right of st−1,i.

Results
In this experiment we use a token distribution where the
“highly valued” tokens are concentrated in one corner, with
a second concentration near the center where the rovers are
initially located. This experiment is described in more detail
in (Tumer, Agogino, & Wolpert 2002).

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
lo

b
a
l
R

e
w

a
rd

 A
c
h
ie

v
e
d

Time

QUICR-Learning
WLU Q-Learning

Q-Learning
Local Q-Learning

Figure 2: Multi-Agent Grid World Problem (40 Agents).

Figure 2 shows the performance for 40 agents on a 400
unit-square world for episodes of 20 time steps (error bars
of ± one σ are included). The performance measure in
these figures is the sum of full rewards (rt(st)) received in
an episode, normalized so that the maximum reward achiev-
able is 1.0. Note all learning methods are evaluated on the
same reward function, independent of the reward function
that they are internally using to assign credit to the agents.

The results show that local Q-learning generally produces
poor results. This problem is caused by all agents aiming
to acquire the most valuable tokens, and congregating to-
wards the corner of the world where such tokens are lo-
cated. In essence, in this case agents using local Q-learning
compete, rather than cooperate. The agents using standard
Q-learning do not fare better, as the agents are plagued by
the credit assignment problem associated with each agent re-
ceiving the full world reward for each individual action they
take. Agents using QUICR-learning on the other hand learn
rapidly, outperforming both local and standard Q-learning
by a factor of six (over random rovers). Agents using WLUt

Q-learning eventually achieve high performance, but learn
three times more slowly than agents using QUICR-learning.

Discussion
Using Q-learning to learn a control policy for a single agent
in a coordination problem with many agents is difficult, be-
cause an agent will often have little influence over the re-
ward it is trying to maximize. In our examples, an agent’s
reward received after an action could be influenced by as
many as 800 other actions from other time-steps and other
agents. Even temporal difference methods that perform well
in single agent systems will be overwhelmed by the num-
ber of actions influencing a reward in the multi-agent set-
ting. To address this problem, this paper introduces QUICR-
learning, which aims at reducing the impact of other agent’s
actions without assuming linearly separable reward func-
tions. Within the Q-learning framework, QUICR-learning
uses the difference reward computed with immediate coun-
terfactuals. While eliminating much of the influence of other
agents, this reward is shown mathematically to be aligned
with the global reward: agents maximizing the difference
reward will also be maximizing the global reward. Exper-
imental results in a traffic congestion problem and a grid
world problem confirm the analysis, showing that QUICR-
learning learns in less time than standard Q-learning, and
achieves better results than Q-learning variants that use local
rewards and assume linear separability. While this method
was used with TD(0) Q-learning updates, it also extends to
TD(λ), Sarsa-learning and Monte Carlo estimation.

In our experiments an agent’s state is never directly in-
fluenced by the actions of other agents. Despite this, the
agents are still tightly coupled by virtue of their reward.
Agents can, and did affect each other’s ability to achieve
high rewards, adding complexity that does not exist in sys-
tems where agents are independent. In addition even though
agents do not directly influence each other’s states, they in-
directly affect each other through learning: an agent’s ac-
tions can impact another agent’s reward, and the agents se-
lect actions based on previous rewards received. Hence an

agent’s action at time step t does affect other agents at t′ > t
through their learning algorithms. The mathematics in this
paper does not address these indirect influences and is a sub-
ject of further research. However, experimental evidence
shows that agents can still cooperate despite these indirect
effects. In fact even when agents directly influence each
other’s states, in practice they may still cooperate effectively
as long as they use agent-sensitive rewards that are aligned
with the system reward as has been shown in experiments
presented in (Agogino & Tumer 2004) .

References
Agogino, A., and Tumer, K. 2004. Unifying temporal and
structural credit assignment problems. In Proc. of the Third
International Joint Conference on Autonomous Agents and
Multi-Agent Systems.
Chalkiadakis, G., and Boutilier, C. 2003. Coordination in
multiagent reinforcement learning: A bayesian approach.
In Proc. of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence 13:227–303.
Guestrin, C.; Lagoudakis, M.; and Parr, R. 2002. Coordi-
nated reinforcement learning. In Proceedings of the 19th
International Conference on Machine Learning.
Hu, J., and Wellman, M. P. 1998. Multiagent reinforce-
ment learning: Theoretical framework and an algorithm.
In Proceedings of the Fifteenth International Conference
on Machine Learning, 242–250.
Jones, C., and Mataric, M. J. 2003. Adaptive division of
labor in large-scale multi-robot systems. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS-03), 1969–1974.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for RoboCup-soccer keepaway. Adap-
tive Behavior.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Tumer, K.; Agogino, A.; and Wolpert, D. 2002. Learning
sequences of actions in collectives of autonomous agents.
In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 378–385.
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8(3/4):279–292.
Wolpert, D. H., and Tumer, K. 2001. Optimal payoff func-
tions for members of collectives. Advances in Complex
Systems 4(2/3):265–279.

